The copper-inducible cin operon encodes an unusual methionine-rich azurin-like protein and a pre-Q0 reductase in Pseudomonas putida KT2440.

نویسندگان

  • Davide Quaranta
  • Reid McCarty
  • Vahe Bandarian
  • Christopher Rensing
چکیده

The genome sequences of several pseudomonads have revealed a gene cluster containing genes for a two-component heavy metal histidine sensor kinase and response regulator upstream of cinA and cinQ, which we show herein to encode a copper-containing azurin-like protein and a pre-Q(0) reductase, respectively. In the presence of copper, Pseudomonas putida KT2440 produces the CinA and CinQ proteins from a bicistronic mRNA. UV-visible spectra of CinA show features at 439, 581, and 719 nm, which is typical of the plastocyanin family of proteins. The redox potential of the protein was shown to be 456 +/- 4 mV by voltametric titrations. Surprisingly, CinQ is a pyridine nucleotide-dependent nitrile oxidoreductase that catalyzes the conversion of pre-Q(0) to pre-Q(1) in the nucleoside queuosine biosynthetic pathway. Gene disruptions of cinA and cinQ did not lead to a significant increase in the copper sensitivity of P. putida KT2440 under the conditions tested. Possible roles of CinA and CinQ to help pseudomonads adapt and survive under prolonged copper stress are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction and characterization of nitrate and nitrite respiring Pseudomonas putida KT2440 strains for anoxic biotechnical applications.

Pseudomonas putida KT2440 is frequently used in biotechnical research and applications due to its metabolic versatility and organic solvent resistance. A major drawback for a broad application is the inability of the bacterium to survive and grow under anoxic conditions, which prohibits the production of oxygen-sensitive proteins and metabolites. To develop a P. putida strain, which is able to ...

متن کامل

Transcriptome analysis of Pseudomonas putida KT2440 harboring the completely sequenced IncP-7 plasmid pCAR1.

The IncP-7 plasmid pCAR1 of Pseudomonas resinovorans CA10 confers the ability to degrade carbazole upon transfer to the recipient strain P. putida KT2440. We designed a customized whole-genome oligonucleotide microarray to study the coordinated expression of pCAR1 and the chromosome in the transconjugant strain KT2440(pCAR1). First, the transcriptome of KT2440(pCAR1) during growth with carbazol...

متن کامل

Molecular characterization of the mde operon involved in L-methionine catabolism of Pseudomonas putida.

A 15-kb region of Pseudomonas putida chromosomal DNA containing the mde operon and an upstream regulatory gene (mdeR) has been cloned and sequenced. The mde operon contains two structural genes involved in L-methionine degradative metabolism: the already-identified mdeA, which encodes L-methionine gamma-lyase (H. Inoue, K. Inagaki, M. Sugimoto, N. Esaki, K. Soda, and H. Tanaka. J. Biochem. (Tok...

متن کامل

MqsR/MqsA Toxin/Antitoxin System Regulates Persistence and Biofilm Formation in Pseudomonas putida KT2440

Bacterial toxin/antitoxin (TA) systems have received increasing attention due to their prevalence, diverse structures, and important physiological functions. In this study, we identified and characterized a type II TA system in a soil bacterium Pseudomonas putida KT2440. This TA system belongs to the MqsR/MqsA family. We found that PP_4205 (MqsR) greatly inhibits cell growth in P. putida KT2440...

متن کامل

The Enhancement of Biodesulfurization Activity in a Novel Indigenous Engineered Pseudomonas putida

Background: The combustion of sulfur-rich fossil fuels leads to release of sulfur oxide pollution in the environment. In biodesulfurization process, an organism is able to remove sulfur from fossil fuels without decreasing the caloric value of those substrates. The main aim of this research was to design a recombinant microorganism to remove the highest amount of sulfur compounds in fossil fuel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 189 14  شماره 

صفحات  -

تاریخ انتشار 2007